Задача 17 (Знайти похідну скалярного поля в точці)

Знайти похідну скалярного поля U в точці М0, що належить заданій кривій, за напрямом цієї кривої.


 M_{0}(1;1)\in x^{2}+y^{2}-2y=0

♦  \frac{\partial U(M_{0}}{\partial l}=U_{x}^{'}\left(M_{0} \right)cos\alpha +U_{y}^{'}(M_{0})cos\beta =


 U_{x}^{'}(M_{0}) = \frac{1}{1}+\frac{1}{1} = 1+1 = 2

  U_{y}^{'} = - \frac{x}{y^{2}} - \frac{1}{x}


 f(x;y):\; x^{2}+y^{2}-2y=0

 \begin{matrix}  f_{x}^{'} = 2x & f_{x}^{'}(M_{0}) = 2 \\ f_{y}^{'} = 2y-2 & f_{y}^{'}(M_{0}) = 0 \end{matrix}

 \vec{n}=\left\{f_{x}^{'}; f_{y}^{'} \right\}=\left\{2;0 \right\}

 \left|\vec{n} \right|=\sqrt{4+0}=2

  cos\alpha =\frac{2}{2}=1 \; cos\beta =\frac{0}{2}=0

 =2\cdot 1-2\cdot 0=2-0=2 .

3 Responses to “Задача 17 (Знайти похідну скалярного поля в точці)”

  • Ha Tarascio says:

    My brother recommended I might like this blog. He used to be entirely right. This put up actually made my day. You cann’t imagine simply how a lot time I had spent for this information! Thank you!

  • Treasure Bay says:

    you are really a good webmaster. The site loading speed is amazing. It sort of feels that you are doing any unique trick. Moreover, The contents are masterpiece. you have performed a wonderful process on this subject!

  • Mary Griesi says:

    I like the valuable information you provide in your articles. I’ll bookmark your blog and check again here regularly. I’m quite certain I will learn many new stuff right here! Good luck for the next!

Leave a Reply

Зараз на сайті
contador de visitas счетчик посещений
Лічильник сайту
html counterсчетчик посетителей сайта
Червень 2019
Пн Вт Ср Чт Пт Сб Нд
« Тра