Задача 2 (Область значень функції)

Знайти область значень функції:

а) y = 3√x + 5;

б) у = -х– 4х + 2. 

♦ Область значень функції – це множина значень, яких може набувати змінна у.

а) √х ≥ 0 при будь-яких значеннях х. Тому 3√х ≥ 0, при будь-яких значеннях х. А значить 3√x + 5 ≥ 5. Тому: Е(у) = [5; + ∞).

б) Маємо квадратичну функцію. Виділимо повний квадрат тричлена: 

– 4х + 2 = – (х+ 4х – 2) = – (х+ 2·2·х + 4 – 4 – 2) = – ((х+ 2·2·х + 4) – 6) = – ((х + 2)2 – 6) =  – (х + 2)2 + 6.

Оскліьки, вираз (х + 2)≥ 0 при будь-яких значеннях х, то – (х + 2)≤ 0 при х∈R. Тоді, – (х + 2)2 + 6 ≤ 6 для всіх значень х. Отримали: Е(у) = (-∞; 6].♦

Leave a Reply

Зараз на сайті
contador de visitas счетчик посещений
Лічильник сайту
html counterсчетчик посетителей сайта
Реклама
Календар
Серпень 2018
Пн Вт Ср Чт Пт Сб Нд
« Лип    
 12345
6789101112
13141516171819
20212223242526
2728293031