Задача 2 (Правила обчислення похідних)

Обчислити похідні заданих функцій, користуючись правилами диференціювання та таблицею похідних:

а) y=x^{3}-2x^{2}+4x-13 ;

б) y=lnx\cdot 8^{x} ;

в) y=5\sqrt[5]{x^{7}} ;

г)  y=\frac{sinx}{cosx-1}.

♦ а) y'=3x^{2}-4x+4 ;

б)  y'=(lnx)'\cdot 8^{x}+lnx\cdot (8^{x})'=\frac{1}{x}\cdot 8^{x} + lnx \cdot ln8\cdot8^{x};

в) y'=(5\sqrt[5]{x^{7}})'=(5x^{\frac{7}{5}})'=5\cdot \frac{7}{5}\cdot x^{\frac{7}{5}-1}=7x^{\frac{2}{5}}=7\sqrt[5]{x^{2}} ;

г)  y'=\frac{sin'x(cosx - 1)-sinx(cosx-1)'}{(cosx-1)^{2}}=\frac{cos^{2}x-cosx+sin^{2}x}{(cosx-1)^{2}}=

=\frac{1-cosx}{(cosx-1)^{2}}=\frac{1}{1-cosx} .♦


2 Responses to “Задача 2 (Правила обчислення похідних)”

  • I must express my thanks to this writer for rescuing me from this particular instance. Just after looking out through the the web and finding proposals which were not pleasant, I assumed my life was over. Living minus the approaches to the issues you’ve sorted out all through the short article is a serious case, and ones that might have negatively damaged my career if I hadn’t noticed your web blog. Your personal mastery and kindness in dealing with all areas was very useful. I’m not sure what I would’ve done if I hadn’t come across such a point like this. I can also now look ahead to my future. Thanks a lot so much for the reliable and result oriented help. I won’t be reluctant to recommend your blog post to anyone who would need support on this problem.

  • golden goose says:

    Thank you for every one of your effort on this web site. My mother take interest in conducting investigations and it’s easy to see why. Many of us know all concerning the powerful mode you deliver sensible information on this web blog and therefore improve contribution from some other people on this subject and my princess is without question discovering a whole lot. Enjoy the remaining portion of the new year. You have been performing a useful job.

Leave a Reply

Зараз на сайті
contador de visitas счетчик посещений
Лічильник сайту
html counterсчетчик посетителей сайта
Травень 2019
Пн Вт Ср Чт Пт Сб Нд
« Кві