Многокутники

Приклад

Знайдіть відношення сторони правильногошестикутника, вписаного в коло, до сторони квадрата, описаного навколо цього ж кола. 

♦ МногокутникиВиразимо сторони обох многокутників через радіус кола.

Для квадрата це буде r – радіус вписаного кола, а для шестикутника R – радіус описаного кола.

Тому:  r=\frac{a_{4}}{2},\; R=a_{6}.

 r=R\Rightarrow \frac{a_{4}}{2}=a_{6}\Rightarrow \frac{a_{4}}{a_{6}}=2 . ♦

Приклад

Скільки сторін має правильний многокутник, якщо сума його внутрішніх кутів дорівнює 2520о.

♦ Сума внутрішніх кутів правильного многокутника обчислюється за формулою: 

 S=180^{o}(n-2) .

Тому:  2520^{o}=180^{o}(n-2) ,

 n-2=2520^180 ,

 n-2=14 ,

 n=16  .

Отже, многокутник має 16 сторін.

Приклад

Вершини правильного шестикутника з’єднали відрізками, узявши через одну. Доведіть, що отриманий трикутник є правильним.

♦ МногокутникиРозглянемо трикутники 1, 2 та 3. Вони рівні за першою ознакою рівності трикутників (всі сторони правильного шестикутника рівні, а значить і сторони цих трикутників рівні; кути правильного шестикутника рівні, тому кути між сторонами трикутників  рівні). З рівності трикутників випливає рівність їх елементів, тому відрізки АВ, ВС і АС рівні, а значить трикутник АВС- правильний, що й треба було довести.♦

Приклад

У коло радіуса 2√3 см вписано правильний трикутник. Обчисліть:

а) сторону трикутника;

б) радіус кола вписаного в цей трикутник.

♦ Запишемо формули, що пов’язують радіуси вписаного та описаного кул з довжиною сторони правильного трикутника: 

 r=\frac{a\sqrt{3}}{6} ,

 R=\frac{a\sqrt{3}}{3} .

Для даної задачі R = 2√3 см. Тому: 

 2\sqrt{3}=\frac{a\sqrt{3}}{3},

 a=\frac{6\cdot \sqrt{3}}{\sqrt{3}}=6 см,

 r=\frac{6\sqrt{3}}{6}=\sqrt{3} см. ♦

Приклад

Скільки сторін у правльного многокутника, якщо його внутрішній кут дорівнює 120о?

♦ Формула внутрішнього кута правильного многокутника 

 \alpha =\frac{180^{o^}(n-2)}{n} .

Тоді:  120^{o}=\frac{180^{o}(n-2)}{n},

 120n=180n-360 ,

  60n=360 ,

 n=6 .

Значить правильний многокутник має 6 сторін.♦

Залишити відповідь

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *